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NONLINEAR OPTIMAL TRAJECTORIES USING SUCCESSIVE LINEARIZATION*

Calvin Hecht**
The Aerospace Corporation

El Segundo, California

Abstract Specifying only terminal conditions allowed the
use of an extended linear perturbation approach

A method of designing trajectories for maneu- with quadratic performance criteria. The desired
vering reentry vehicles is developed in this paper. trajectory is significantly different from an initially
Optimal control theory using linear perturbation available nominal or reference trajectory. There-
guidance and a quadratic penalty function is fore, an iterative approach, or a sequence of tra-

employed to design trajectories for these vehicles. jectories, can be developed, each trajectory being
The vehicle equations of motion are represented a reference nominal for the subsequent iteration.
by a five-dimension state vector. The problem is
formulated by linearizing about a reference tra- The iterative method of successively generating
jectory. A linear servomechanism problem, and linearizing about nonlinear trajectories as
rather than a regulator problem, is solved, lead- described in this paper permits penalty factors of
ing to a Riccati matrix differential equation and an the quadratic cost function to be adjusted between
auxiliary vector differential equation which are iterations for the purpose of shaping the final tra-
solved backwards in time. Successive lineariza- jectory to meet the required goals and to ensure
tion consists of iteratively generating new trajec- convergence if necessary. The method of succes-
tories by linearizing about a reference trajectory sive linearization is similar to the method of
created from a prior iteration. The cost function quasilineari'ation, or generalized Newton-Raphson
is adjusted between iterations to shape the trajec- approach. 5- There is an advantage for the method
tory. Qualitative guidelines for selecting these described in this paper, however: direct access of
cost functions are given. Test cases are shown, intermediate computations is available, enabling
with emphasis on designing a trajectory to inter- the iterative adjustments of the problem parameters.
cept a target point.

The second section of this paper briefly sum-
4 Introduction marizes the applicable linear perturbation theory,

including the servomechanism technique. The
The objective of this paper is to investigate the nonlinear and linearized equations of motion are

application of optimal control theory to design given, and the section concludes with a more
trajectories for maneuvering reentry vehicles, detailed description of the successive linearization
The trajectory must satisfy specified conditions, method. The third section contains a discussion of
and possibly be optimal in some sense. A general the evaluation of the weighting matrices. The last
formulation of the problem leads to the Euler- section contains descriptions of test cases to
Lagrange equations, which are two-point boundary further illustrate the method and to demonstrate its
value problems, or the Hamilton-Jacoby-Bellman usefulness.
partial differential equation.

Linear Perturbation Theory

Much of the recently published research related
to maneuvering reentry vehicles is concerned with Linear Servomechanism Technique
determining an optimal control to enable the
vehicle to follow a prescribed trajectory. --. The The nonlinear differential equations describing
methods used for solving these trajectory-following the vehicle motion are given by
problems are variations of the perturbation guid-
ance schemes discussed in Bryson and Ho and in x f(x, u)
various other texts. 4-5 The basic perturbation

"" guidance scheme is concerned with time-varying with x the state vector, u the control vector, and f
linear systems with quadratic performance criteria a vector valued function of the state and control.
"and small deviations from a nominal solution. Linearizing about a nominal state and control func-

tion, xo(t) and uo(t), and defining
The specified conditions for an optimal trajec-

tory are given in terms of terminal conditions. 6x = x - x°
For accuracy trajectories, the --npact point and 0()
final flight path angle are specified. Efficient 6u = u - u.
flight path shaping leads to steeper terminal flight
path angles, which reduce navigation errors.
Range extension and evasion trajectories can also gives
be specified by the terminal conditions. In each
case, the initial conditions are fixed. The one bx F 6x + G 6u (3)
variable that needs attention throughout the entire
flight is the control vector, since its magnitude is
required to not exceed specified values and it plays
an important role in determining total flight time F and G are time-varying Jacobian matrices whose
and final velocity. elements 1ij and gij are given by

This work was supported by Contract No. F04701-76-C-0077, SAMSO, Air Force Systems Command,
Los Angeles, California.

Member of the Technical Staff, Guidance and Control Division, Member AIAA.
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3fi(x. U 1. Generate a nominal trajectory xo(t) with a

nominal control uo(t), and compute and store the
3i - xj F(t) and G(t) matrices.

3li(x, u (4) 2. Initialize P and 4 at the terminal time,gij au. according to Eqs. (7) and (8), and integrate back-

wards from tj to to. Compute and store the gain
matrix

where fi, x| and uj are the components of their
respective Vectors, and where fij and gj are
evaluated along a nominal or reference trajectory. K R= G'P (9)

The objective of the optimization process is to and control vector

generate a trajectory which has specified desirable
properties. For the reentry vehicle trajectory k = R 1 G'• (10)
problems discussed in this paper, the terminal
conditions are specified. Designating this desired 3. Initialize x(to) and integrate Eq. (1) forward
terminal state rl(tf), we formulate the problem by in time with
minimizing the quadratic cost function

' 6x(tf) - rltf) - xo(tf)) u (

f ith 6x x - x0 to obtain x(t), a nonlinear solution,

+ J 16 x(t)11" + 116u(t)jJZ dt (5) and an optimal linearized control u(t).

0 System Description, Linearized
Equations of Motion

The first term of Eq. (5) represents the penalty
for a deviation from the desired terminal state at The coordinate system used to describe the
forahdevination. frmThe desiredts therminl Sate equations of motion was centered on the surface of
therefore, wout d be much larger than the corres- a flat, nonrotating earth, with x pointing down-
th nerefore, tsould be muh trange, y crossrange, and z positive upward along
ponding elements of the Q matrix. The first term telclvria n asn hog h eil
inside of the integral sign represents a penalty for the local vertical and passing through the vehicle
deviations of the perturbed trajectory from the at time equals zero. The point mass representa-
nominal trajectory. Since the desired trajectory tion of the vehicle is shown in Figure 1. The

is not necessarily close to the nominal, Q would state equations were

normally be small. However, this term needs
some weighting to keep the perturbed trajectory x = a cos y cos q) (12)
close to the nominal to allow the linear perturba-
tion approximations to be valid. The second term y a cos y sin q) (13)
inside of the integral sign represents the penalty
for control variations about the nominal, and needs z s - s sin y (14)
to be weighted to ensure that the control does not
exceed specified bounds. ACL u-

-L L (15)
A solution to the minimization problem stated m a Cos

in Eq. (5) is given in Sage, 5 Page 96, or Bryson
andHo, 4 Chapter 5. The solution is A CL

a n d H o Li -u ( 1 6 )
6u= R_ G'(P 6x-) (6)

with the matrix P(t) and vector 4(t) given by ALTIIUDE

P. - /F'P + PGR 1 G' P -VEHICLE Ai i0

12 P~t) = (- - +OF'+ +PGRP (7) 1
t (r(tf) - x (tf)) (8) DOWNRANGE x • ._

where prime (') denotes transpose. u2 '/1
• Y CROSSRANGf

Equation (7) is the same Riccati equ:;tion U1
obtained for the linear regulator problem, and 7
Eq. (8) is an auxiliary equation needed for the uI y plene
servomerchanism problem. Uin veociy vecla plane

The algorithm for solving the linearized servo-
mechanism problem is as follows: Figure 1. Coordinate definition.
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A D f4 5  GC sau exp (-z/h5 ) --
D:. Cos y

with f53 =C s u exp (-z/he)L

S~s
x, y, z ý the position coordinates of the CS ,vehicle g41 C CI a exp (-z/hs8) Cosy

= ,y two angles defining the velocity a e 1 /h
vector g 5 2  exp1 -z/8 (18)

cont
= vehicle speed

with the constant C1 (I/2)CL(A/rn)o
Ul, u? = control components

The li., sarized perturbation differential equation
q = dynamic pressure = (I/Z)ps2 is give- bj Eq. (3) with

A/m = reference area to mass ratio -0 0 0 f fF=LO14 15
CL = slope of the lift coefficient 0 0 0 f24 f 2 5

CD(uluz) = nonlinear drag coefficient F =0 0 0 0 f35 (19)

P = air density = Po exp (-z/h.) 0 0 f43 0 f4 5

Po, ha = constants defining air density _0 0 f 53 0 0 _

approximation
0 0

The control components u and u 2 are the corn-
ponents of angle of attack. The direction of the
force associated with angle of attack is shown in 0 0

Figure 1. This model is applicable to either a
cruciform configuration vehicle or a bank-to-turn
vehicle with negligibly small autopilot time 0
constants. 4

0 There is no direct control of the speed. The 0 g5Z
state model X was therefore represented by the
five-state vector The gain matrix K, Eq. (9), and control vec-

tor k, Eq. (10), are, respectively, a (5 x Z)
matrix and a two-dimension vector,

Successive Linearization Technique

X Z The successivw linearization method iteratively
P applies the algorithm described in the preceding

, section, with the nominal trajectory and control
for each iteration being the solution of the prior
iteration.

The speed equation (17) was used for the solution
of the nonlinear state squations (12) through (16), The aerodynamically controlled reentry vehicle
but was not considered an element of the state problems discussed in this paper were started
vector for the purpose of solving the linearized with the nominal control uo(t) = 0. After an initial
e"quations. reference trajectory is generated with this control,

"a perturbed trajectory is generated using an
The F and G matrices, given in Eqs. (3) and optimal controller derived from the linearized

•• (4) for the linearized model, were dimensioned, equations and the initial cost function penalty

respectively, (5 >x 5) and (5 x 2), with all of the matrices. When this first pass is completed, we
elements equal to zero except those listed, have a perturbed reference trajectory xo(t) and a

11numinal Us(t) J 0. A control, ii(t), associated with
fit - s cos y sin y a trajectory X(t) that has the required specified

properties can be obtained by a judicious selection
f 15 s cos 4i sin y of the weighting matrices Q, R, and S.

fZ4 = a cos y cos 40 The process in illustrated in Figure 2. The
technique for the selection of the weighting

f = s sin ip ain y matrices is described in the next section.

f s cos y The gain anatrix K and the auxiliary control
vector k for each iteration are related to the

1f, Iselected weighting matrices Q, R, and S; Eqs. (7)f 43 C I a s I exp (-z/h a F Cosy through (10). A qualitative relationship between the
S(I 8) weighting matrices and the defined performance

7



rule-of-thumb method, suggested by Bryson and
INITIALIZE PROBLEM Ho, 4 is to proportion the weights according to the
ZERO APPROPRIATE reciprocal of the squares of the maximum accept-

ARRAYS able deviation from the nominal.

-S = n x maximum acceptable value ofSINITIALIZE FOPý'.ARD [xltf) X, (t)

- = n X (tf - t )X maximum acceptable
value of x't) x' (t)

YER-0 = r X (tf - t ) X maximum acceptableFIS Tvalue 
of uVt) u' (t).

o il): 0 u'i= Klil 8x +k61 + u°" with n the state vector dimension, r the control
vector dimension, and (tf - to) the limits of inte-

INTEGRATE STORE gration of the cost function, Eq. (5).i ~ FORWARD J x(•l, ohld
fix, 0) Fit), Gfl The trajectories developed using the method

described in this paper were not necessarily
concerned with minimizing a deviation from a

SSTORE xlY reference. The relationship between the solu-
tion and the weighting matrices is roughly
governed by the inverse square law, and this
information was used to aid in choosing the value

TRAJECTORY YES for the weighting matrices.
SATISFACTORY

The qualitative effect of the weighting matrices
on the shape of the final trajectory can easily beNO determined by referring to the cost function,

ADJUST ODl, RII, S Eq. (5): large Q tending to hold the perturbedSINITIALIZE BACKWARD PARAMIETES trajectory close to the reference; large R tendingI Z B R to reduce the amount of control; and large S tend-Ph.•t I S ing to reduce the error between the perturbed
(ItfIfISI ltII- xIitflI final state and the target point. Other trajectory

properties have been specified, which also must
be controlled with Q, R, S selection: the total

G time of flight and the final velocity. These rela-EBACKWARD ST0 tionships are shown in Table i, which gives quali-
Pit) -=-PF-FP+ PGRI G'P- O Kilf--RIG, P tative guidelines for adjusting the weighting
1W I-F' + PGR- 1 G') k4 i O R- 1  matrices from one iteration to the next.

Because the desired trajectory is generally not
close to the reference trajectory, Q should be as
small as practical. Q must be at least positive

Note:. argument is digital Idiscsetl time, semi-definite. The Q inatrix functions as a stabi-I agumeni is coninuous time lizing controller, and generally needs small posi-
tive numbers on the diagonal to ensure a stable
solution. The desired trajectory must come close

Figure 2. Successive linearization technique. to the target point, suggesting large positive num-
bers for the S matrix,

criterion can be developed. The weighting matrices Experience has shown the chief influence on theScan then be changed between iterations, based on shape of the trajectory is the relative weighting ofthe measured conditions, to achieve the desired the elements of the S matrix, Essentially, the per-performance. Specific methods for shaping the turbed trajectory will terminate much closer to thetrajectories of the reentry vehicle are shown in target point than the nonmaneuvering impact pointthe sections on "Evaluation of the Weighting on the first iteration. The relative weights on the
Matrices" and the "Test Cases, terminal position components and flight path angle,

although having second order effects on the final
;Evaluation of Weighting Matrices Q, R, S state, appear to strongly influence the trajectory-- shape. These component weightings can be ade-

quately accomplished by manipulating the diagonal
The performance of the vehicle, as character- components, with the olf-diagonal elements set

ined by the shape of the final trajectory, is deter- equal to zero.
mined by the values of the Q, R, and S matrices.
No general analytic method is available for corn- The control vector u is subject to a direct and
putling these matrices aor the tilne varying system an indirect hard constraint. The direct constraint
described. Sworder and Wells. demonstrate an is umax u where
analytic approach which can be used when making ul 5 u
certain uimplying assumptions, and de Virgilio, x U(21)
Wells, and Schiringl suggest a procedure for 2 2 h/determining these matrices. The commonly used withluIu (u + u 2 )

8



Table I. Qualitative relationships for adjusting U2
weighting matrices.

Matrix Adjustment
Objective

Q R su

Follow .lu. red.e Increaise Decrease .- U
Reference

Intercept Decrease Decrease Increase
Target

Reduce Decrease Increase Decrease
Control

Decrease Increase if per- Increase if per- Increase altitude U max
Time of turbed trajec- turbed trajec- component;
Flight tory is longer tory is longer decrease hori-

than nonnlaneu- than nonmaneu- zontal compo-
vering trajec- vering trajec- nents. Compo-
tory; decr,'ase tory; decrease nent refers to
otherwise, otherwise, diagonal element

o f m a t r i x .

U 1

Increase Increase if per. Increase if per- Increase altitude
Terminal turbed trajec- turbed trajec. component; Uý U 2S U
Speed tory terminal tory terminal decrease hori-

speed is lower speed is lower zontal compo-
than nonmareu- than nonmaneu- nents. Compo-
vering trajec- vering trajec- nent refers to
tory; decrease tory; decrease diagonal element IF U >U
otherwise, otherwise, of matrix. S max

Umax

The control must also limit the normal accel- ui --- Us.
eration to an acceptable value, amax. The accel-= •* 5
eration is given by

Figure 3. Scaling the control when

ag = )( 1) exceeding the constraint.

wr.. - ---- I r.. (Z5)

with r i new s rax i (5

Sma.,

a = acceleration in g's with

q = dynamic pressure rii ith diagonal element of R m±atrix

CL = slope of the lift coefficient new ithr..1 diagonal element of R matrix for

W/Ag = mass to reference area ratio the next iteration
U = U +6U

9 gravity Us o

The indirect constraint is As ihown in Figure 3, us is the total control from
the linear formulas when uo + 6u exceeds Umax.

Jul 5 Urmax a Test Cases

The procedures described in this paper were
with used to generate trajectories designed to achieve

various objectives. Two sample cases are de-

uW-I al a (23) scribed in this section. The descriptions are formax a A-qC L ax the purpose of illustrating the technique and demon-,

strating the types of results that can be obtained. $
Then, Numerical results are given in terms of normal-

ized data: linear distances are referunced to h,
umax S Urnax u' max(4) the initial altitude, and angles are referenced to X

a = Umax u, the maximum angle of attack. ,'
The total control (nominal plus perturbed) is Specified Target and Terminal Flight Path

tested at each point along the trajectory. If it gne No Acceleration Cnstraint
exceeds umax, it is limited as shown in Figure 3,
and the R matrix is modified for the next iteration A basic trajectory is one that has a fixed initial
according to state, impacts at a specified location, approaches

Vehicle parameters and aerodynamic data for the evaluation of the trajectory generation scheme were
similar to the examples used in an unclassified report with unlimited distribution. 1
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Cooloitiolo Gle th is valip Itkid covipt0 row ~uiltiA ar
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riat portturbod trajoctory (Iteration 1) carne fairly tu -

V ~~lti ti to the final trAjectory. The torminal flight jtif - -
o ~ ~ ~ ph aiSiigil wvai %ilgnilicatntly different than the tar- ~ 0

got vA lu e o( f it 6 11, Subs equent iterations imlprovedl.~-

third i'Iteration, the diffeirences between the actual - -CONDITIONS SHOWN INTAL2

And tatrigtotd tormninal conditions wvere reasonably 0 .
vmitnllz donetVnilne error ýý0. 001 56, ciostirange DOWNRANGE, x/h

V ,error 40, flight path angle orror =0. 006.

The flight time of 6. 1 45 sec and speed of Figure 5. Trajectory in the x..y plane.
0, Z8191/ sc at the last iteration, compared to the
noiom-Anouvoring values of 3. 99?8 sec and 0. 3925/
woe, demontitrates, the trade-off between the ma--
viouveritig arid tiontnaneuverlng cases. 12h1ý-iIII43i4

d......ONDITIONS SHOWN IN TABLE 2t
Table 2, Specified Larget - nio acceleration ~ 20.......-4

constraint

To at Conditions

Initial Conditions:0.

0 '~ . £ 0 0.4 0.0 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.0 5.2 5.6 6.0

t /ihtnMarcs Figure 6. Flight path angle.

Qegtn Zatr/es to) RIR-1t)
Q44 "~ S5 /(5 tI it1 - 2 2 "0. 01 (ti.1

sit 3Zs~ 33- 2x 10, '*44 ='o 103 =zo2 t

All Other E~lements - 0 V, 11

'1Control Constraint; .3-

ma 1.0 u none N03CODTOSSONITAL2
UmaxUmax a

4 Tem~nl 0 Iteration No. <age 0.20

Condit onv 0 I 2 3 Condition -

Xh I. 73207 2. 50873 2. 49833 2. 49843 2. 50000 2 1 ~

iiY lh 0 0. 33220 0. 33327 0. 33333 0. 33333 ~ 00
1V . 309 2,425 2.603 2.623, 2.617

Tlmg,. sec 3. 998 6. 119 6. 125 6. 125 0 0.4 008 1.2 1.6 2 0 2.4 2.0 3.2 3.65 4.0 4 4 4.0 5.2 5.6 6.0
TIME, set

Spedh. 0.3925 0.2924 0.2878 0.Z819
Isa Figure 7. Horizontal control.
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this function is related to the error between an 1.0 __LI I-T
interim and the solution trajectory.

Figures 12 through 14 show three elements of 0.8. "- I CONDITICNSSI4OWNINTABIE3
the (2 X< 5) gain matrix K. The three elemnents

ar K 1 , K 2 3 , and K2 5 . which are the vertical ~ .
control gains for x, z, and Y errors, respectively.
An interesting fact is that the gain K21 is mostly t0.4
of opposite polarity for Iterations 2 and 3 as com-

pared to Iteration 1.0.

Specified Target and Terminal Flight Path Angle - 0 I
Angle of Attack and Acceleration Constraint 0-.-... - 2 -02.0 0.5 1 0 1.5 2.0 2.5

A more realistic test caste is one that is limited DOWNRANGE, x/h
both in maximum angle of attack and normal accel-
eration. An in-plane target was selected to exa- Figure 1 5. trajectory in the x-z plane,
mine the R matrix adjusting algorithm. constraint problem.

Conditions for this case and computed results
are listed in Table 3. Figures 15 through 18 are
computer-generated plots of trajectory data. 2 - - - - - - - CONDITIONS SHOWN IN TABLE 3

The initial weighting matrices were the same
as in the previous case, except that out-of-plane 1 "1 IIA/- I
parameters were ignored. Figures 15 and 16
show the trajectories. The first perturbed tra- I.
jectory came fairly close to the terminal target
position, but the terminal flight path angle error S-[ I
was large as seen in Figure 16 and Table 3. An 05 J----
identical case had previously been tried with no 0 0.4 '0. 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0
acceleration constraint (not reported herein), and flME.ac
the terminal flight path angle error was consid-
erably smaller on the first iteration. Subsequent Figure 16. Flight path angle,
iterations improve the trajectory as indicated in constraint problem.
"Table 3. After the fourth iteration, the differences
between the actual and targeted terminal conditions
were small: downrange error = 0. 00073, flight'path

Table 3. Specified target-acceleration
constraint 0.2 - CONDITIONS SHOWN IN TABLE

Test Conditions 01

Initial Conditions:

S0= , yo = 0, zo/h 1e. 0

'[: • o/h = 0 . 5 9 3 / s e e . ýY O 0 , Y o = 1 . 3 0 9 . 1

Weighting Matrices: TIE see.

'\Q44 ' Q55 - ZO (t f - to), R_ 11 R_• 12: 0.01 (tf to)
i(•1Figure 17. Vertical control, constraint

S l 11 = SZ 22 5 33 = 2 X 10o- 5 S44 S 55 , 20 problem .
SAll Other Elements 0

C n r lConstraint: 

2800- T 
.~

C. Umaxu =1.0 Unaxa/a 0. 16att0 2400 0
____ ____ ____ ____ ____ _ _28000

Terminal Iteration No. Target1600

S10Conditions o 1 2 3 Condition '20
g/h ft 1. 73ZO7 2.,50377 2. 50530 Z. 50133•2. 50073 2.5000 400

' / t 0 0 0 0 0 0 J it

Y/a tad 1,309 1.713 1.854 1. I .939 1950 -NE T .2I-4.8 4.4 40 3.6-3.2-2-24-2.0-1.6-1.2-0.8-0.4 0

Time, sec .998 5.856 S.1871 5.8"74 5.R876

Spe/hec 0,3925 0.33307 0.3313 0.3310 0. 310 Figure 18. An element of the R matrix,
I / secR 

l l = R Z Z .
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angle error -- 0. 011. Referring to Table 3, we not proved that the solution is optimal in any
see the final flight path angle approaching the sense. We have shown, however, for the cases
targeted value with very small changes of flight considered, that by proper choices of the penalty
time, or final speed showing the effectiveness of function weighting matrices a solution can be
the R weighting matrix, made to converge to a trajectory having desirable

specified terminal properties.
Figure 17 shows the control function. Because

of 0. 16 constraint, the magnitude 6f u2 is
limited to about 0. 16 at the start and again References
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iteration, we see R growing at the extremities of Guidance and Control Conference, San Diego,
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